The generator matrix

 1  0  0  1  1  1  1  1  1  1  3  1  X  1  6 2X+3  1  1  0  1  1  1  0  1  1  1  1  1  1  1  1 X+3 2X+3  1  1  3  1  1 2X+3  1 2X+6  1  1  1  1  1  1 2X  1 X+6  1 X+3 X+3 2X+6  1  1  1 2X+3 X+6  1  1  1  1  0 X+6  1  1  0  1  X  1  1  6 2X  1  1  1  1 2X  1  1  1 2X+6  1 X+3  1  3 X+6  1  1  1  1 X+3  1  1  1  1 X+3  1
 0  1  0  0  6 2X+4 2X+4 X+8  1 X+2  1  2  1 2X  1 X+3  8 2X+1  1 X+6  4  4  1 X+6 2X+5  8 2X+3 2X+5  6 X+2 X+5 X+6  1  4 X+1  1 X+4  X  1  6  1 X+5 X+6 2X+1  8  X  2 X+3 X+4  1 2X+4  1  1 2X  2 2X+8 X+2  1  1 2X  1  3 X+4  1  1 X+8 X+4 2X+6 2X+6  1 X+1  2  1  1 2X+1 X+8  2 X+4  1 2X+7 2X+3  6  3  0  1  8  1  1  2  8 2X+3 X+2 X+6 2X+4  5 2X+8 2X  1  0
 0  0  1  1  2  2 2X+3  1  7 2X+3  7 X+2 X+8 X+1  X  1 X+1 X+8 X+2 2X 2X+7  6 2X+1 2X+8 2X+5 2X X+3 2X+8  8  0 2X+4  1  X 2X+7  6  5  5 X+1 X+3 2X+3  4  1 X+8  4  3  4 X+2  1 2X+5  8  3 2X+4 X+3  1  3 X+5 2X+2 X+2  0 X+4 X+1 2X+2 2X  3 2X+1 2X+3 X+4  1  5 2X+1  5 X+7 2X+1  5 2X+7 X+6 X+5 X+2 X+7 2X+7 2X+6  8  1 X+7 2X+5 2X+2 X+1  1 X+5  3 X+4 2X+1  1 X+5 2X+8 X+1 2X+3 2X+6  X
 0  0  0 2X  3  6  0  6  0  3  3  3  6  0  0  0  6  6  3  3  3 2X 2X+3 2X+6 X+6 2X+6  X 2X X+3 X+6  X  X X+6 2X+6 X+3 2X 2X X+3 2X+6 2X+6 X+6 2X+6 2X+3  X X+6  6 2X 2X+3  X 2X+6 2X+6 X+6 2X+3  X  0  X  0  X  X X+3 X+6 X+3  6 X+6  0 2X+3  3 2X+3 2X+6 2X  X X+6 X+6  6  X 2X X+3 2X+3  3 2X  6  X  6  3 X+3 2X+6 2X+3  0  0 X+3  6 X+3 2X 2X X+3  0 2X  0 X+3

generates a code of length 99 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 186.

Homogenous weight enumerator: w(x)=1x^0+372x^186+930x^187+1848x^188+2996x^189+4110x^190+5754x^191+7230x^192+8802x^193+9138x^194+12434x^195+12528x^196+12690x^197+15224x^198+15384x^199+12696x^200+13546x^201+11574x^202+9126x^203+7438x^204+5028x^205+3294x^206+2158x^207+1194x^208+630x^209+426x^210+150x^211+126x^212+60x^213+48x^214+66x^215+42x^216+12x^217+18x^218+20x^219+12x^220+6x^221+18x^222+6x^223+12x^224

The gray image is a code over GF(3) with n=891, k=11 and d=558.
This code was found by Heurico 1.16 in 97.7 seconds.